How organizations can make the most of LLMs
As more organizations experiment with GenAI, the landscape of emerging AI models is only becoming more and more vast. The large variety of models available means that organizations that have overcome the first question of whether they should be using AI in the first place are now posed with an even more daunting question: which model should they be using?
With the overwhelming number of options available in the market and new challenger models constantly being developed and rolled out, many businesses are unsure which direction to follow and which model to adopt to best support the development of its applications. As we look to the future and expect more models and versions to be introduced, organizations should adopt a flexible approach when selecting AI models — shifting focus from finding the best suited single vendor to adopting a balanced, future-proof approach with LLM Mesh.
Director of Sales Engineering at Dataiku.
The Risks Posed by the Reliance of a Single Vendor
Relying solely on a single model is risky. For example, let’s say a company centers its commercial healthcare applications around a single AI model without integrating other models. The risk is that the single model relied on can sometimes provide inaccurate results and recommendations, leading not only to potential financial issues but also causing a decrease in trust in the company from the wider market. How do we know this to be true? Because this happened to IBM, which centered its healthcare applications around Watson’s AI model. Since the model sometimes provided inaccurate information, this resulted in the erosion of trust, alongside a large negative impact on reputation. The company’s healthcare arm has since struggled to recover.
Despite the prominence of tools such as Open AI’s ChatGPT, concerns over its governance have raised questions and doubts among investors and those involved in integrating new technologies. As with the case of IBM, there is an operational risk when companies jump on one wave and tie themselves to a single AI model. To mitigate this risk, avoiding a single vendor lock-in is crucial in navigating the fast-paced landscape of AI and the ability to reduce concerns about security, ethics and stability. This is why companies are encouraged to shift their perspective from a single vendor lock-in to now jump on all of the different AI waves — using the LLM Mesh.
LLM Mesh: Jump on All Waves
With the LLM Mesh, businesses can ride the wave of AI models while preparing for future changes. By removing the complexities of backend connections and API requirements, the LLM Mesh makes it simple to transition or “wave hop” from one model to another quickly.
The benefit of “wave hopping” is that it allows businesses to develop enterprise applications using today’s top AI models while still having the choice of switching to other models — whether that is jumping to more suitable models now or keeping options open for emerging models to appear in the market.
As businesses make informed decisions about the costs of running LLMs, which can be quite expensive, they must also choose the right model for the performance needs of an application. Keeping options open to consider these needs such as costs, performance, and security allows companies to benefit in a fast-moving landscape.
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
The Imperative to Jump Now
Why take the jump now? Nearly 90% of executives rank GenAI as a top tech priority. Waiting for the perfect wave is a strategy for competitive disadvantage. While companies look to the future of AI technology, it is important not to wait to jump on the AI wave if they want to avoid getting left behind. To capitalize on the momentum, companies should fully immerse themselves in utilizing AI. As of 2024, there are over 125 commercial LLM models available, with a rapid 120% increase in models released from 2022 to 2023. The landscape is growing, and new emerging models are being introduced in the market — there is no better time than now for companies to hop on the wave.
The bottom line is that companies that want to ride the GenAI wave without suffering the downsides of vendor lock-in really have one option: adopting an LLM Mesh approach. Not only does this approach offer the flexibility to choose which model aligns best with an organization’s priorities, but it will also help to future-proof AI applications and projects to ensure a business can always take advantage of the latest AI models. If an organization surfs the AI wave in a smarter, more agile way, then it stands a much better chance of getting ahead of the competition and coming out well from the tide of AI innovation.
We’ve listed the best AI tools.
This article was produced as part of TechRadarPro’s Expert Insights channel where we feature the best and brightest minds in the technology industry today. The views expressed here are those of the author and are not necessarily those of TechRadarPro or Future plc. If you are interested in contributing find out more here: https://www.techradar.com/news/submit-your-story-to-techradar-pro
As more organizations experiment with GenAI, the landscape of emerging AI models is only becoming more and more vast. The large variety of models available means that organizations that have overcome the first question of whether they should be using AI in the first place are now posed with an…
Recent Posts
- MediaTek’s new flagship chipset is ready for AI agents and tri-fold phones
- A Google breakup is on the table, say DOJ lawyers
- 297 Best Prime Day Deals, Vetted By Our Amazon Experts (Oct 2024)
- DJI Neo review: The best $200 drone ever made
- Prime Day kitchen deals on tech, gadgets, accessories and more during Big Deal Days
Archives
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- December 2011