Forget about 5G: Universities worldwide compete to become dominant force in 6G with Terahertz chips and rival technologies


Universities worldwide are competing to lead the development of 6G technology, focusing on advances in terahertz communications and innovative silicon chips which promise data transmission rates far beyond current capabilities, potentially transforming how we communicate in the future.
A team from the University of Adelaide has made significant strides, introducing a new polarization multiplexer that operates at terahertz frequencies. This technology could dramatically increase data transmission by efficiently using the available spectrum.
“Our proposed polarization multiplexer will allow multiple data streams to be transmitted simultaneously over the same frequency band, effectively doubling the data capacity,” explained Professor Withawat Withayachumnankul. “This large relative bandwidth is a record for any integrated multiplexers found in any frequency range. If it were to be scaled to the center frequency of the optical communications bands, such a bandwidth could cover all the optical communications bands.”
Wide-ranging applications
By doubling communication capacity under the same bandwidth and reducing data loss, the multiplexer could accelerate advancements in fields such as high-definition video streaming, augmented reality, and 6G mobile networks. Co-author Professor Masayuki Fujita highlighted the potential impact, saying, “This innovation is poised to catalyze a surge of interest and research activity in the field.”
Meanwhile, the University of Notre Dame has developed a silicon topological beamformer chip, which was recently featured in Nature. “Our chip takes a terahertz signal from a single source and splits it into 54 smaller signals,” lead researcher Ranjan Singh wrote in an article for The Conversation.
“Terahertz frequencies are crucial for 6G, which telecommunications companies plan to roll out around 2030. The radio frequency spectrum used by current wireless networks is becoming increasingly congested. Terahertz waves offer a solution by using the relatively unoccupied portion of the electromagnetic spectrum between microwaves and infrared. These higher frequencies can carry massive amounts of data, making them ideal for the data-intensive applications of the future.”
Designed with artificial intelligence, the chip features a honeycomb structure that channels terahertz waves with precision, delivering focused beams for ultrafast data transmission at speeds of up to 72 gigabits per second. You can see an illustration of this experimental chip at the top of the page.
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
These terahertz technologies have wide-ranging applications, from enabling instant downloads of 4K ultra-high-definition movies to supporting real-time holographic communication and remote surgeries. The potential for these breakthroughs could revolutionize telecommunications, imaging, radar, and the internet of things in the coming decade.
More from TechRadar Pro
Universities worldwide are competing to lead the development of 6G technology, focusing on advances in terahertz communications and innovative silicon chips which promise data transmission rates far beyond current capabilities, potentially transforming how we communicate in the future. A team from the University of Adelaide has made significant strides, introducing…
Recent Posts
- Elon Musk’s AI said he and Trump deserve the death penalty
- The GSA is shutting down its EV chargers, calling them ‘not mission critical’
- Lenovo is going all out with yet another funky laptop design: this time, it’s a business notebook with a foldable OLED screen
- Elon Musk’s first month of destroying America will cost us decades
- The first iOS 18.4 developer beta is here, with support for Priority Notifications
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010