100x less compute with GPT-level LLM performance: How a little known open source project could help solve the GPU power conundrum — RWKV looks promising but challenges remain


Recurrent Neural Networks (RNNs) are a type of Artificial Intelligence primarily used in the field of deep learning. Unlike traditional neural networks, RNNs have a memory that captures information about what has been calculated so far. In other words, they use their understanding from previous inputs to influence the output they will produce.
RNNs are called “recurrent” because they perform the same task for every element in a sequence, with the output being dependent on the previous computations. RNNs are still used to power smart technologies like Apple‘s Siri and Google Translate.
However, with the advent of transformers like ChatGPT, the landscape of natural language processing (NLP) has shifted. While transformers revolutionized NLP tasks, their memory and computational complexity scaled quadratically with sequence length, demanding more resources.
Enter RWKV
Now, a new open source project, RWKV, is offering promising solutions to the GPU power conundrum. The project, backed by the Linux Foundation, aims to drastically reduce the compute requirement for GPT-level language learning models (LLMs), potentially by up to 100x.
RNNs exhibit linear scaling in memory and computational requirements, but struggle to match the performance of transformers due to their limitations in parallelization and scalability. This is where RWKV comes into play.
RWKV, or Receptance Weighted Key Value, is a novel model architecture that combines the parallelizable training efficiency of transformers with the efficient inference of RNNs. The result? A model that requires significantly fewer resources (VRAM, CPU, GPU, etc) for running and training, while maintaining high-quality performance. It also scales linearly to any context length and is generally better trained in languages other than English.
Despite these promising features, the RWKV model is not without its challenges. It is sensitive to prompt formatting and weaker at tasks requiring look-back. However, these issues are being addressed, and the model’s potential benefits far outweigh the current limitations.
The implications of the RWKV project are profound. Instead of needing 100 GPUs to train a LLM model, a RWKV model could deliver similar results with fewer than 10 GPUs. This not only makes the technology more accessible but also opens up possibilities for further advancements.
More from TechRadar Pro
Recurrent Neural Networks (RNNs) are a type of Artificial Intelligence primarily used in the field of deep learning. Unlike traditional neural networks, RNNs have a memory that captures information about what has been calculated so far. In other words, they use their understanding from previous inputs to influence the output…
Recent Posts
- British startup claims to have developed tech that can deliver 65% lossless file compression – but you’ll have to pay big for it
- The White House’s favorite source of pro-Trump news is … the White House’s YouTube channel
- NYT Wordle today — answer and my hints for game #1476, Friday, July 4
- We confirmed Nintendo’s Switch 2 TV dock supports VRR — so why doesn’t it work with Switch 2?
- Chinese vendor launches liquid-cooled mini PC powered by AMD’s most powerful AI processor, with a built-in 400W PSU
Archives
- July 2025
- June 2025
- May 2025
- April 2025
- March 2025
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021