This wearable robotic arm can hold tools, pick fruit, and punch through walls

We’ve always had a soft spot for supernumerary robotic limbs here at The Verge, but this latest example of the genre is one of the most impressive we’ve seen to date. Designed by researchers at the Université de Sherbrooke in Canada, it’s a hydraulic arm that sits on the wearer’s hip and uses a three-fingered manipulator to carry out a range of tasks.
As reported by IEEE Spectrum, the arm has three degrees of freedom, can move at a speed of 3.4 meters per second, and can lift five kilograms in weight. It’s pretty light and weighs just four kilograms, roughly the same as a human arm. But that’s primarily because it uses a hefty external power source that’s attached via a short tether, limiting mobility.
As the video above shows, there’s a huge range of tasks a robot like this could be put to in the future. It could mimic the wearer’s movements, speeding up jobs like picking fruit or painting. Or it could act as an assistant, holding items in a workshop or passing tools. Or it could just punch through walls — in case you have anger issues and fragile fists.
An external power source does introduce some constraints, but that might not be too awkward if the wearer is working in one place (as is likely in a workshop) or if the power source can be moved about on wheels, perhaps even following the wearer autonomously.

It’s important to remember, though, that these are very much hypothetical use cases right now. The technology isn’t ready to be dropped into factories or workshops, with control perhaps the biggest limiting factor. This arm doesn’t think for itself, as the robotic limbs of Marvel’s Dr. Octavius do. As the demo video shows, right now, the arm is manipulated by a third party. Creating a robotic limb that’s smart enough to be useful without human instruction is a very difficult task that’s likely a long way off still.
But what research projects like this can do is help engineers work out other potential issues, like how do you compensate for inertia created by a robot arm when it performs fast or powerful movements? As you can see in the wall-smashing section of the video, this can potentially throw the wearer off balance. The solution here was to place the arm next to the wearer’s center of mass and secure the setup with a rigid harness, though the experience still looks a little wobbly to us.
For more details on the arm and a short interview with the project’s lead researcher, Catherine Véronneau, you can head over to IEEE Spectrum to read its report.
We’ve always had a soft spot for supernumerary robotic limbs here at The Verge, but this latest example of the genre is one of the most impressive we’ve seen to date. Designed by researchers at the Université de Sherbrooke in Canada, it’s a hydraulic arm that sits on the wearer’s…
Recent Posts
- Kick off Pokémon Day 2025 with this gorgeous short film
- BitTorrent for LLM? Exo software is a distributed LLM solution that can run even on old smartphones and computers
- The dream of PictoChat on the Nintendo DS lives on in this iMessage app
- Amazon is launching Alexa.com and new app for Alexa Plus
- Alexa Plus explained: 9 things you need to know about Amazon’s new AI-powered assistant
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010