These robots move through the magic of mushrooms

Researchers at Cornell University tapped into fungal mycelia to power a pair of proof-of-concept robots. Mycelia, the underground fungal network that can sprout mushrooms as its above-ground fruit, can sense light and chemical reactions and communicate through electrical signals. This makes it a novel component in hybrid robotics that could someday detect crop conditions otherwise invisible to humans.
The Cornell researchers created two robots: a soft, spider-like one and a four-wheeled buggy. The researchers used mycelia’s light-sensing abilities to control the machines using ultraviolet light. The project required experts in mycology (the study of fungi), neurobiology, mechanical engineering, electronics and signal processing.
“If you think about a synthetic system — let’s say, any passive sensor — we just use it for one purpose,” lead author Anand Mishra said. “But living systems respond to touch, they respond to light, they respond to heat, they respond to even some unknowns, like signals. That’s why we think, OK, if you wanted to build future robots, how can they work in an unexpected environment? We can leverage these living systems, and any unknown input comes in, the robot will respond to that.”
The fungal robot uses an electrical interface that (after blocking out interference from vibrations and electromagnetic signals) records and processes the mycelia’s electrophysical activity in real time. A controller, mimicking a portion of animals’ central nervous systems, acted as “a kind of neural circuit.” The team designed the controller to read the fungi’s raw electrical signal, process it and translate it into digital controls. These were then sent to the machine’s actuators.
The pair of shroom-bots successfully completed three experiments, including walking and rolling in response to the mycelia’s signals and changing their gaits in response to UV light. The researchers also successfully overrode the mycelia’s signals to control the robots manually, a crucial component if later versions were to be deployed in the wild.
As for where this technology goes, it could spawn more advanced versions that tap into mycelia’s ability to sense chemical reactions. “In this case we used light as the input, but in the future it will be chemical,” according to Rob Shepherd, Cornell mechanical and aerospace engineering professor and the paper’s senior author. The researchers believe this could lead to future robots that sense soil chemistry in crops, deciding when to add more fertilizer, “perhaps mitigating downstream effects of agriculture like harmful algal blooms,” Shepherd said.
You can read the team’s research paper at Science Robotics and find out more about the project from the Cornell Chronicle.
This article originally appeared on Engadget at https://www.engadget.com/science/these-robots-move-through-the-magic-of-mushrooms-171612639.html?src=rss
Researchers at Cornell University tapped into fungal mycelia to power a pair of proof-of-concept robots. Mycelia, the underground fungal network that can sprout mushrooms as its above-ground fruit, can sense light and chemical reactions and communicate through electrical signals. This makes it a novel component in hybrid robotics that could…
Recent Posts
- No, it’s not an April fool, Intel debuts open source AI offering that gauges a text’s politeness level
- It’s clearly time: all the news about the transparent tech renaissance
- Windows 11 24H2 hasn’t raised the bar for the operating system’s CPU requirements, Microsoft clarifies
- Acer is the first to raise laptop prices because of Trump
- OpenSSH vulnerabilities could pose huge threat to businesses everywhere
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010