Researchers fuse lab-grown human brain tissue with electronics

In a story ripped from the opening scenes of a sci-fi horror movie, scientists have bridged a critical gap between the biological and electronic. The study, published in Nature Electronics (summarized in Nature), details a “hybrid biocomputer” combining lab-grown human brain tissue with conventional circuits and AI. Dubbed Brainoware, the system learned to identify voices with 78 percent accuracy. It could one day lead to silicon microchips fused with neurons.
Brainoware combines brain organoids — stem-cell-derived clusters of human cells morphed into neuron-filled “mini-brains” — with conventional electronic circuits. To make it, researchers placed “a single organoid onto a plate containing thousands of electrodes to connect the brain to electric circuits.” The circuits, speaking to the brain organoid, “translate the information they want to input into a pattern of electric pulses.”
The brain tissue then learns and communicates with the technology. A sensor in the electronic array detects the mini-brain’s response, which a trained machine-learning algorithm decodes. In other words, with the help of AI, the neurons and electronics merge into a single (extremely basic, for now) problem-solving biomachine.
The researchers taught the computer-brain system to recognize human voices. They trained Brainoware on 240 recordings of eight people speaking, “translating the audio into electric to deliver to the organoid.” The organic part reacted differently to each voice while generating a pattern of neural activity AI learned to understand. Brainoware learned to identify the voices with 78 percent accuracy.
The team views the work as more proof of concept than something with near-term practical use. Although previous studies showed two-dimensional neuron cell cultures could do similar things, this is the first trial run using a trained three-dimensional lump of human brain cells. It could point to a future of biological computing, where the “speed and efficiency of human brains” spark a superpowered AI. (What could go wrong?)
Arti Ahluwalia, a biomedical engineer at Italy’s University of Pisa, sees the technology shedding more light on the human brain. Since brain organoids can duplicate the nervous system’s control center in ways simple cell cultures can’t, the researcher views Brainoware (and the further advances it could spawn) as helping model and study neurological disorders like Alzheimer’s. “That’s where the promise is; using these to one day hopefully replace animal models of the brain,” Ahluwalia told Nature.
Challenges for the bizarre proto-cyborg tech include keeping the organoids alive, especially when moving to the more complex areas where scientists eventually want to deploy them. The brain cells must grow in an incubator, which could become more challenging with bigger organoids. The next steps include working to learn how brain organoids adapt to more complex tasks and engineering them for greater stability and reliability.
This article originally appeared on Engadget at https://www.engadget.com/researchers-fuse-lab-grown-human-brain-tissue-with-electronics-175507932.html?src=rss
In a story ripped from the opening scenes of a sci-fi horror movie, scientists have bridged a critical gap between the biological and electronic. The study, published in Nature Electronics (summarized in Nature), details a “hybrid biocomputer” combining lab-grown human brain tissue with conventional circuits and AI. Dubbed Brainoware, the…
Recent Posts
- Windows 11 24H2 hasn’t raised the bar for the operating system’s CPU requirements, Microsoft clarifies
- Acer is the first to raise laptop prices because of Trump
- OpenSSH vulnerabilities could pose huge threat to businesses everywhere
- Magic: The Gathering’s Final Fantasy sets will tell the stories of the games
- All of Chipolo’s Bluetooth trackers are discounted in sitewide sale
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010