Monitoring is critical to successful AI

Companies often identify AI and ML performance issues after the damage has been done

Amit Paka Contributor
Krishna Gade Contributor
As the world becomes more deeply connected through IoT devices and networks, consumer and business needs and expectations will soon only be sustainable through automation.
Recognizing this, artificial intelligence and machine learning are being rapidly adopted by critical industries such as finance, retail, healthcare, transportation and manufacturing to help them compete in an always-on and on-demand global culture. However, even as AI and ML provide endless benefits — such as increasing productivity while decreasing costs, reducing waste, improving efficiency and fostering innovation in outdated business models — there is tremendous potential for errors that result in unintended, biased results and, worse, abuse by bad actors.
The market for advanced technologies including AI and ML will continue its exponential growth, with market research firm IDC projecting that spending on AI systems will reach $98 billion in 2023, more than two and one-half times the $37.5 billion that was projected to be spent in 2019. Additionally, IDC foresees that retail and banking will drive much of this spending, as the industries invested more than $5 billion in 2019.
These findings underscore the importance for companies that are leveraging or plan to deploy advanced technologies for business operations to understand how and why it’s making certain decisions. Moreover, having a fundamental understanding of how AI and ML operate is even more crucial for conducting proper oversight in order to minimize the risk of undesired results.
Companies often realize AI and ML performance issues after the damage has been done, which in some cases has made headlines. Such instances of AI driving unintentional bias include the Apple Card allowing lower credit limits for women and Google’s AI algorithm for monitoring hate speech on social media being racially biased against African Americans. And there have been far worse examples of AI and ML being used to spread misinformation online through deepfakes, bots and more.
Through real-time monitoring, companies will be given visibility into the “black box” to see exactly how their AI and ML models operate. In other words, explainability will enable data scientists and engineers to know what to look for (a.k.a. transparency) so they can make the right decisions (a.k.a. insight) to improve their models and reduce potential risks (a.k.a. building trust).
But there are complex operational challenges that must first be addressed in order to achieve risk-free and reliable, or trustworthy, outcomes.
5 key operational challenges in AI and ML models
Companies often identify AI and ML performance issues after the damage has been done Amit Paka Krishna Gade 8 hours Amit Paka Contributor Amit Paka is co-founder and chief product officer at Fiddler Labs, an explainable AI startup that enables enterprises to deploy and scale risk- and bias-free AI applications.…
Recent Posts
- The end of an era? TSMC, Broadcom could tear apart Intel’s legendary business after 57 years by separating its foundry and chip design
- Beterbiev vs Bivol 2 LIVE: Fight stream, cheapest PPV deals, how to watch light-heavyweight title rematch
- Spotify HiFi was announced four years ago, and it’s almost here — maybe
- AT&T will let you split your bill with people on your plan
- Sandisk’s revolutionary new memory promises DRAM-like performance, 4X capacity at half the price
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010