IBM becomes first to demonstrate advantage of quantum computers in real-life scenario IBM Quantum Challenge 2021


Before the quantum era can officially begin, scientists must first prove that quantum computers can provide advantages over the classical computers of today which is why IBM researchers recently conducted an experiment to do just that.
According to a new blog post from IBM Quantum, the company’s researchers have, for the first time ever, reported a simultaneous proof along with experimental verification of a new kind of quantum advantage. Specifically they showed that even today’s noisy qubits offer “more value than bits as a medium of storage during computations”.
IBM’s quantum team thinks of computing in terms of circuits and at the start of a circuit, there are a number of classical or quantum bits. These bits are set to an initial value and then the circuit progresses forward through a user-written program, made up of gates. While different gates have different effects on these bits, the output of this kind of circuit is a set of zeroes and ones in both the classical and quantum case.
When it comes to classical computers, these bits are switches that can either be on or off and interact inside gates that flip switches based on the inputs to this gate. Quantum bits or qubits though can take on a combination of these two switch positions and quantum gates create states that incorporate every possible combination of switch positions.
Demonstrating the advantage
In their new academic paper published in Nature Physics titled “Quantum advantage for computations with limited space”, IBM Quantum’s researchers set out to prove the advantage quantum computers have over classical computers.
They did this by setting up an experiment using circuits restricted to using two-input gates and limited to using one bit of computational/scrap space to answer the question: “How does the computational power differ when a computer has access to classical scratch space versus quantum scratch space?”.
IBM’s researchers then proved in their paper that there are functions which a restricted classical computer cannot compute but a restricted quantum computer can. To do so, they pitted a real quantum computer against a classical computer.
In order to increase the computational capabilities of the classical computer used in their experiment, the researchers armed it with access to random Boolean gates. However, even with access to this randomness, the classical computer was still only able to succeed 87.5 percent of the time while a perfect, noiseless quantum computer would be able to succeed 100 percent of the time according to the findings of IBM’s paper.
While today’s quantum computers are too noisy to achieve this kind of perfect result, IBM Quantum’s researchers still managed to achieve a success rate of 93 percent and beat the classical system when carrying out the experiment in real-life by calibrating special entangling gates to perform these circuits more efficiently.
Before the quantum era can officially begin, scientists must first prove that quantum computers can provide advantages over the classical computers of today which is why IBM researchers recently conducted an experiment to do just that. According to a new blog post from IBM Quantum, the company’s researchers have, for…
Recent Posts
- Elon Musk says Grok 2 is going open source as he rolls out Grok 3 for Premium+ X subscribers only
- FTC Chair praises Justice Thomas as ‘the most important judge of the last 100 years’ for Black History Month
- HP acquires Humane AI assets and the AI pin will suffer a humane death
- HP acquires Humane AI assets and the AI pin may suffer a humane death
- HP acquires Humane Ai and gives the AI pin a humane death
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010