Dispelling three popular myths about AI digital transformation


Data can be sourced from anywhere, such as business tools and applications, website analytics, industrial equipment, wearables, social media – its sources are limitless. However, to build a trusted AI system, data must be compliant, accurate, clean, and most importantly, relevant for the intended purpose. Data has to have meaning. It’s the most important thing to build trusted data and build AI at scale. Unreliable data can derive from poor data-collection practices such as customer relationship management (CRM) and enterprise resource planning (ERP) or from call centers, to name a few. Businesses that use practices such as these aren’t necessarily aiming for qualitative data.
To overcome this challenge, it’s imperative that companies build a “business data fabric” and execute a strong data governance, as an integral part of the fabric, to help them monitor the data they use to train AI models. However, our research shows that only 8% of corporate companies have a governance function already established, so this is an area on which businesses need to be advised.
Consequently, AI itself can also be part of the solution to fix data quality, with algorithms being able to extract information from handwritten forms, amend data entry errors and match information across systems. AI can be used to self-discover data, enabling an automated matching between technical terms and business terms, so that data can be meaningful and trusted. Companies will still need human validation checks, but machine learning will “learn” from these human interventions with the system becoming smarter and smarter over time. In this way, businesses can ensure AI applications leverage only trusted data.
In fact, our Trusted AI Platform provides insights to organizations on the sources and drivers of risk and guides an AI design team in quantifying AI risks. By developing a quantitative score of an AI system’s residual risk, the EY Trusted AI Platform calculates the residual risk of an AI system. Based on the anticipated impact on users, stakeholder risk acts as a multiplier to technical risk, considering social and ethical implications. The evaluation of governance and control maturity acts as a mitigating factor to reduce residual risk of an AI system.
Data can be sourced from anywhere, such as business tools and applications, website analytics, industrial equipment, wearables, social media – its sources are limitless. However, to build a trusted AI system, data must be compliant, accurate, clean, and most importantly, relevant for the intended purpose. Data has to have meaning.…
Recent Posts
- Up close with Alexa Plus – this may finally be the Echo upgrade I’ve been waiting for
- The Xbox Wireless Controller is just $39 right now
- Living with extreme heat might make you age faster
- This external Geforce RTX 4090M GPU is the most powerful you can buy right now and creatives will absolutely love it
- Kick off Pokémon Day 2025 with this gorgeous short film
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010