Diamond-based electronics could help power your laptop one day — as researchers claim hardest semiconductor holds key to carbon-neutrality in energy market


Diamonds might be a girl’s best friend, but diamond-based electronics could be the key to carbon-neutrality in the energy market, potentially even powering your laptop one day, according to researchers.
A new study reveals that diamonds could be more effective than silicon in operating high-voltage power grids, which are crucial for the efficiency of renewable energy.
According to the US Energy Information Administration, the global demand for electricity is projected to surge by nearly 50% by 2050. However, around two-thirds of the generated energy in the U.S. is lost before it reaches the customer, says Can Bayram, an associate professor at the University of Illinois, Urbana-Champaign.
Not without challenges
Bayram suggests that one solution to enhance power grid efficiency is to transition from alternating current (AC) to direct current (DC). A DC grid could potentially reduce AC grid losses by 90%, eliminating the need for rectifiers and decreasing the need for transformers. Moreover, high-voltage DC grids are more efficient at transmitting energy over long distances, making them particularly beneficial for remote solar and wind farms.
Power electronics, which control more than half of the world’s electricity, are essential for supporting these grids. Bayram predicts that this figure will increase to 80% by 2030 due to the rising adoption of renewable energy. He argues that the future DC grid will require power electronics that are faster and stronger than current silicon devices, and that semiconducting diamond could be the answer.
Diamond, the hardest known semiconductor, is also one of the best thermal conductors and has a high breakdown voltage. This means that diamond semiconductor devices can operate at higher currents and voltages with less material, without experiencing a reduction in electrical performance.
Bayram also notes that diamond-based electronics could lead to lower costs in shipping, transportation, and installation due to their lighter weight. However, there are challenges to overcome, such as increasing the thickness of the “drift region” in diamond-based devices, a crucial component in withstanding high voltages.
Despite these hurdles, the research team has achieved record-high breakdown voltages of about 5,000 volts in thin drift layers, demonstrating the lowest leakage current of diamond devices.
“We believe diamond will enter the semiconductor market at high-end power levels, more than 5 megawatts,” Bayram says. “Converters based on diamond will be cost-competitive, because even if the diamond device itself is more expensive than usual silicon devices, the reduction of the semiconductor size and the simplification of the system including the thermal management will significantly reduce the overall cost.”
The scientists detailed their findingsin the journal IEEE Electron Device Letters.
More from TechRadar Pro
Diamonds might be a girl’s best friend, but diamond-based electronics could be the key to carbon-neutrality in the energy market, potentially even powering your laptop one day, according to researchers. A new study reveals that diamonds could be more effective than silicon in operating high-voltage power grids, which are crucial…
Recent Posts
- Security flaw in popular stalkerware apps is exposing phone data of millions
- Anker’s 58-liter solar fridge is a noisy power-monster
- Salt Typhoon hackers used this clever technique to attack US networks
- Apple pulls encryption feature from UK over government spying demands
- 16 Best Crossplay Games for Consoles and PC (2025): Xbox, PlayStation, Switch, Mobile
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010