Deep Science: Keeping AI honest in medicine, climate science and vision

Research papers come out far too frequently for anyone to read them all. That’s especially true in the field of machine learning, which now affects (and produces papers in) practically every industry and company. This column aims to collect some of the more interesting recent discoveries and papers — particularly in, but not limited to, artificial intelligence — and explain why they matter.
This week we have a number of entries aimed at identifying or confirming bias or cheating behaviors in machine learning systems, or failures in the data that support them. But first a purely visually appealing project from the University of Washington being presented at the Conference on Computer Vision and Pattern Recognition.
They trained a system that recognizes and predicts the flow of water, clouds, smoke and other fluid features in photos, animating them from a single still image. The result is quite cool:
Why, though? Well, for one thing, the future of photography is code, and the better our cameras understand the world they’re pointed at, the better they can accommodate or recreate it. Fake river flow isn’t in high demand, but accurately predicting movement and the behavior of common photo features is.
An important question to answer in the creation and application of any machine learning system is whether it’s actually doing the thing you want it to. The history of “AI” is riddled with examples of models that found a way to look like they’re performing a task without actually doing it — sort of like a kid kicking everything under the bed when they’re supposed to clean their room.
This is a serious problem in the medical field, where a system that’s faking it could have dire consequences. A study, also from UW, finds models proposed in the literature have a tendency to do this, in what the researchers call “shortcut learning.” These shortcuts could be simple — basing an X-ray’s risk on the patient’s demographics rather than the data in the image, for instance — or more unique, like relying heavily on conditions in the hospital its data is from, making it impossible to generalize to others.
The team found that many models basically failed when used on datasets that differed from their training ones. They hope that advances in machine learning transparency (opening the “black box”) will make it easier to tell when these systems are skirting the rules.

Image Credits: Siegfried Modola (opens in a new window) / Getty Images
Research papers come out far too frequently for anyone to read them all. That’s especially true in the field of machine learning, which now affects (and produces papers in) practically every industry and company. This column aims to collect some of the more interesting recent discoveries and papers — particularly…
Recent Posts
- Nvidia confirms ‘rare issue’ with some RTX 5090 and RTX 5070 Ti GPUs – here’s how to check if you’re affected and to get a replacement
- Silo season 3: Everything we know so far about the Apple TV Plus show
- The iOS 18.4 beta brings Matter robot vacuum support
- Philips Monitors is now offering a whopping 5-year warranty on some of its displays, including a gorgeous KVM-enabled business monitor
- The secretive X-37B space plane snapped this picture of Earth from orbit
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010