Alibaba unveils the network and datacenter design it uses for large language model training


Alibaba has revealed its datacenter design for LLM training, which apparently consists of an Ethernet-based network in which each host contains eight GPUs and nine NICs that each have two 200 GB/sec ports.
The tech giant, which also offers one of the best large language models (LLM) around via its Qwen model, trained on 110 billion parameters, says this design has been used in production for eight months, and aims to maximize the utilization of a GPU’s PCIe capabilities increasing the send/receive capacity of the network.
Another feature that increases speed is the use of NVlink for the intra-host network providing more bandwidth between hosts. Each port on the NICs is connected to a different top-of-rack switch avoiding a single point of failure a design that Alibaba call rail-optimized.
Each pod contains 15,000 GPUs
A new type of network is required because the traffic patterns in LLM training is different from general cloud computing because of low entropy and bursty traffic. there is also a higher sensitivity to faults and single point failures.
“Based on the unique characteristics of LLM training, we decided to build a new network architecture specifically for LLM training. We should meet the following goals; scalability, high performance, and single-ToR fault tolerance,” the company said.
Another part of the infrastructure that was revealed was the cooling mechanism. As no vendors could provide a solution to keep chips below 105C, the temperature at which switches begin to shut down, Alibaba designed and created its own vapor chamber heat sink along with using more wicked pillars at the center of chips carrying heat away more efficiently.
The design for LLM training is encapsulated in pods that contain 15,000 GPUs and each pod can be located in a single datacenter. “All datacenter buildings in commission in Alibaba Cloud have an overall power constraint of 18MW, and an 18MW building can accommodate approximately 15K GPUs. In conjunction with HPN, each single building perfectly houses an entire Pod, making predominant links inside the same building.” Alibaba wrote.
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
Alibaba also wrote it expects model parameters to continue to rise by an order of magnitude in the next several years from one trillion to 10 trillion parameters, and that its new architecture is planned to be able to support this and increase to a scale of 100,000 GPUs.
Via The Register
More from TechRadar Pro
Alibaba has revealed its datacenter design for LLM training, which apparently consists of an Ethernet-based network in which each host contains eight GPUs and nine NICs that each have two 200 GB/sec ports. The tech giant, which also offers one of the best large language models (LLM) around via its…
Recent Posts
- I tried this new online AI agent, and I can’t believe how good Convergence AI’s Proxy 1.0 is at completing multiple online tasks simultaneously
- I cannot describe how strange Elon Musk’s CPAC appearance was
- Over a million clinical records exposed in data breach
- Rabbit AI’s new tool can control your Android phone, but I’m not sure how I feel about letting it control my smartphone
- Rabbit AI’s new tool can control your Android phones, but I’m not sure how I feel about letting it control my smartphone
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010