AI can now play Minecraft just as well as you – here’s why that matters


Experts at OpenAI have trained a neural network to play Minecraft to an equally high standard as human players.
The neural network was trained on 70,000 hours of miscellaneous in-game footage, supplemented with a small database of videos in which contractors performed specific in-game tasks, with the keyboard and mouse inputs also recorded.
After fine-tuning, OpenAI found the model was able to perform all manner of complex skills, from swimming to hunting for animals and consuming their meat. It also grasped the “pillar jump”, a move whereby the player places a block of material below themselves mid-jump in order to gain elevation.
Perhaps most impressive, the AI was able to craft diamond tools (requiring a long string of actions to be executed in sequence), which OpenAI described as an “unprecedented” achievement for a computer agent.
An AI breakthrough?
The significance of the Minecraft project is that it demonstrates the efficacy of a new technique deployed by OpenAI in the training of AI models – called Video PreTraining (VPT) – that the company says could accelerate the development of “general computer-using agents”.
Historically, the difficulty with using raw video as a source for training AI models has been that that what has happened is simple enough to understand, but not necessarily how. In effect, the AI model would absorb the desired outcomes, but have no grasp of the input combinations required to reach them.
With VPT, however, OpenAI pairs a large video dataset drawn down from public web sources with a carefully curated pool of footage labelled with the relevant keyboard and mouse movements to establish the foundational model.
To fine tune the base model, the team then plugs in smaller datasets designed to teach specific tasks. In this context, OpenAI used footage of players performing early-game actions, such as cutting down trees and building crafting tables, which is said to have yielded a “massive improvement” in the reliability with which the model was able to perform these tasks.
Another technique involves “rewarding” the AI model for achieving each step in a sequence of tasks, a practice known as reinforcement learning. This process is what allowed the neural network to collect all the ingredients for a diamond pickaxe with a human-level success rate.
“VPT paves the path toward allowing agents to learn to act by watching the vast numbers of videos on the internet. Compared to generative video modeling or contrastive methods that would only yield representational priors, VPT offers the exciting possibility of directly learning large-scale behavioral priors in more domains than just language,” explained OpenAI in a blog post (opens in new tab).
“While we only experiment in Minecraft, the game is very open-ended and the native human interface (mouse and keyboard) is very generic, so we believe our results bode well for other similar domains, e.g. computer usage.”
To incentivize further experimentation in the space, OpenAI has partnered with the MineRL NeurIPS competition, donating its contractor data and model code to contestants attempting to use AI to solve complex Minecraft tasks. The grand prize: $100,000.
Audio player loading… Experts at OpenAI have trained a neural network to play Minecraft to an equally high standard as human players. The neural network was trained on 70,000 hours of miscellaneous in-game footage, supplemented with a small database of videos in which contractors performed specific in-game tasks, with the…
Recent Posts
- Your new favorite teacher might be this AI educator that never loses their patience
- Kia’s next EV is the affordable, long-range EV4 sedan
- Meta’s AI chatbot will soon have a standalone app
- Framework’s Laptop 12 Could Inject New Life Into Budget Portable PCs
- CRKD teamed up with Gibson to make new guitar controllers
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010