AI and big data won’t work miracles in the fight against coronavirus

To someone with a hammer, every problem looks like a nail — and as expected, the tech sector is hard at work hammering every nail it can find. But the analytical prowess of the modern data ecosystem is especially limited when attempting to tackle the problem of potential coronavirus treatments.
It’s only to be expected — and of course lauded — that companies with immense computing resources would attempt to dedicate those resources in some way to the global effort to combat the virus.
In some ways these efforts are extremely valuable. For instance, one can apply the context-aware text analysis of Semantic Scholar to the thousands of articles on known coronaviruses to make them searchable by researchers around the globe. And digital collaboration tools available globally to research centers and health authorities are leagues beyond where they were during the last health crisis of (or rather, approaching) this magnitude.
But other efforts may give a false sense of progress. One field in particular where AI and tech have made large advances is in drug discovery. Numerous companies have been founded, and attracted hundreds of millions in funding, on the promise of using AI to speed up the process by which new substances can be identified that may have an effect on a given condition.
Coronavirus is a natural target for such work, and already some companies and research organizations are touting early numbers: 10 or 100 such substances identified which may be effective against coronavirus. These are the types of announcements that gather headlines around them — “An AI found 10 possible coronavirus cures” and that sort of thing.
It’s not that these applications of AI are bad, but rather that they belong to a set with few actionable outcomes. If your big data analysis of traffic supports or undercuts a proposed policy of limiting transportation options in such and such a way, that’s one thing. If your analysis produces dozens of possible courses of action, any of which might be a dead end or even detrimental to current efforts, it’s quite another.
Because these companies are tech companies, and by necessity part ways with their solutions once they are proposed. Any given treatment lead requires a grueling battery of real-life tests even to be excluded as a possibility, let alone found to be effective. Even drugs already approved for other purposes would need to be re-tested for this new application before they could be responsibly deployed at scale.
Furthermore, the novel substances that are often the result of this type of drug discovery process are not guaranteed to have a realistic path to manufacturing even at the scale of thousands of doses, to say nothing of billions. That’s a completely different problem! (Though it must be said, other AI companies are working on.)
As a lead-generation mechanism, these approaches are invaluable, but the problem is not that we have no leads — it’s all the entire world can manage right now to follow up on the leads it started with. Again, this is not to say that no one should be doing drug candidate identification, but that they should be considered for what they are: a list of tasks, with uncertain outcomes, for other people to do.
Similarly, an “AI” technique by which, say, chest x-rays can be automatically analyzed by an algorithm, is something that could be valuable in the future, and should be pursued — but it’s important to keep expectations in line with reality. A year or two from now there may be telehealth labs set up for that purpose. But no one this spring is going to be given a coronavirus diagnosis by an AI doctor.
Other places where algorithmic predictions and efficiencies would be welcome in other days are going to reject them during an emergency response where everything needs to be deliberate and triple-checked, not clever and novel. The most attractive and popular approaches for fast-moving startups are rarely the right ones for a global crisis involving millions of lives and thousands of interlocking parts.
We’re happy when a vehicle manufacturer repurposes its factories to produce masks or ventilators, but we don’t expect it to discover new drugs. Similarly, we shouldn’t expect those working on drug discovery to be anything more than that — but AI has a reputation as being something like magic, in that its results are somehow fundamentally superhuman. As has been noted repeatedly before, sometimes “better” processes just get you the wrong answer faster.
The work on the digital bleeding edge of the biotech industry is indispensable in general, yet, in the face of a looming health crisis, uniquely unsuited for helping mitigate the crisis. But it must not be expected to, either among the lay public who read only headlines, or among the technotopians who find in such advances more promise than is warranted.
To someone with a hammer, every problem looks like a nail — and as expected, the tech sector is hard at work hammering every nail it can find. But the analytical prowess of the modern data ecosystem is especially limited when attempting to tackle the problem of potential coronavirus treatments.…
Recent Posts
- Elon Musk says Grok 2 is going open source as he rolls out Grok 3 for Premium+ X subscribers only
- FTC Chair praises Justice Thomas as ‘the most important judge of the last 100 years’ for Black History Month
- HP acquires Humane AI assets and the AI pin will suffer a humane death
- HP acquires Humane AI assets and the AI pin may suffer a humane death
- HP acquires Humane Ai and gives the AI pin a humane death
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010