A public cloud service has ranked among the most powerful supercomputers for the first time Best virtual desktop


At last year’s SC19 conference, Microsoft Azure unveiled is HBv2 virtual machine clusters with the bold claim that they “rival the most advanced supercomputers on the planet”.
Just a year later at the virtual Supercomputing 2020 (SC20) event, the software giant has revealed that its public cloud computing service has joined the ranks of the world’s most powerful data-intensive supercomputers by placing 17th on the prestigious Graph500 list. According to Microsoft, this is the first time a public cloud has placed on the Graph500 and as the company’s HBv2 VMs yield 1,151 GTEPs (Giga-Traversed Edges Per Second), Azure’s placement on the list ranks among the top six percent all-time for published submissions.
Microsoft also announced that it has achieved a new record for Message Passing Interface-based (MPI) HPC scaling on the public cloud. By running Nanoscale Molecular Dynamics (NAMD) across 86,400, CPU cores, Azure has demonstrated that researchers anywhere can have petascale computing at their fingertips.
The company also participated in the COVID-19 HPC Consortium and and a team led by Azure’s Dr. Jer-Ming Chia worked with researchers from the Beckman Institute for Advanced Science and Technology at the University of Illinois to evaluate HBv2 VMS for supporting future simulations of the SARS-CoV-2 virus. To the team’s surprise, they found that HBv2 clusters were not only able to meet the researchers’ requirements but that their performance and scalability on Azure rivaled and even surpassed the capabilities of the Frontera supercomputer in some cases.
Graph500 vs TOP500
To compile its list of the top 500 supercomputers twice a year, TOP500 uses Jack Dongarra’s Linpack benchmark because it is widely used and performance numbers are available for almost all relevant systems. The Graph500 list on the other hand focuses on data-intensive workloads which is why it uses its own benchmark.
As government, enterprise and research organizations become increasingly data-centric, the Graph500 serves as a useful barometer for customers and partners trying to migrate challenging data problems to the cloud.
The Breadth-first search (BST) test is part of the Graph500 benchmark and it stresses HPC and supercomputing environments in a number of ways while placing an emphasis on the ability to move data. The test uses the “popcount” CPU instruction which is particularly useful for customer workloads in cryptography, molecular fingerprinting and extremely dense data storage.
In a blog post, VP of Mission Systems at Microsoft, Dr. William Chappell explained how organizations can now use the company’s HBv2 clusters to solve challenging data problems as opposed to setting up their own systems, saying:
“When critical customers have a unique need, like a challenging sparse graph problem, they no longer have to set up their own system to have world-class performance. Since we are rivaling results of the top ten machines in the world, this demo shows that anyone with a unique mission, including critical government users, can tap into our already existing capabilities. Because this comes without the cost and burden of ownership, this changes how high-performance compute will be accessed by mission users. I see this as greatly democratizing the impact of HPC.”
At last year’s SC19 conference, Microsoft Azure unveiled is HBv2 virtual machine clusters with the bold claim that they “rival the most advanced supercomputers on the planet”. Just a year later at the virtual Supercomputing 2020 (SC20) event, the software giant has revealed that its public cloud computing service has…
Recent Posts
- Silo season 3: Everything we know so far about the Apple TV Plus show
- The iOS 18.4 beta brings Matter robot vacuum support
- Philips Monitors is now offering a whopping 5-year warranty on some of its displays, including a gorgeous KVM-enabled business monitor
- The secretive X-37B space plane snapped this picture of Earth from orbit
- Beyond 100TB, here’s how Western Digital is betting on heat dot magnetic recording to reach the storage skies
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010